

# NORTH SYDNEY GIRLS HIGH SCHOOL

## **HSC Mathematics Extension 2**

Assessment Task 1

E9

| <b>Term 4</b> 20 |
|------------------|
|------------------|

| Name:            | e:Mathematics Class:                                                            |                                                                         |                               |                                      |               |                |
|------------------|---------------------------------------------------------------------------------|-------------------------------------------------------------------------|-------------------------------|--------------------------------------|---------------|----------------|
| Student Number   |                                                                                 |                                                                         |                               |                                      |               |                |
| Time Allowed:    | 50 minutes                                                                      | + 2 minutes r                                                           | reading time                  |                                      |               |                |
| Available Marks: | 45                                                                              |                                                                         |                               |                                      |               |                |
| Instructions:    |                                                                                 |                                                                         |                               |                                      |               |                |
| Question 1 (a) I | Multiple choic                                                                  | e (10 marks)                                                            |                               |                                      |               |                |
|                  | • Indicate                                                                      | your answer b                                                           | by colouring th               | e appropriate ci                     | rcle          |                |
| (b) <b>(</b>     | Constrained a                                                                   | nswer (marks                                                            | 5)                            |                                      |               |                |
|                  | • Indicate                                                                      | your answer b                                                           | by entering it ir             | nto the diagram                      | on the answer | sheet provided |
| Question 2       | uestion 2 Free response (10 marks)                                              |                                                                         |                               |                                      |               |                |
|                  | <ul> <li>Write or</li> <li>Do not</li> <li>Attempt</li> <li>Show all</li> </ul> | n one side of th<br>work in colum<br>t all questions<br>Il necessary wo | ne page only<br>ins<br>orking | on booklet prov<br>ete or poorly arr |               |                |
| Question         | 1 -10                                                                           | 11a                                                                     | 11 bc                         | 12                                   | Total         |                |
| E3               | /10                                                                             | /5                                                                      |                               |                                      | /15           |                |
| E2               |                                                                                 |                                                                         |                               | /10                                  | /10           |                |

/

/

/

#### **Question 1**

Multiple Choice (10 marks). Please answer on the answer sheet provided.

Let z = 5 - 2i and w = 3 + 4i. Then  $z - \overline{w}$  is (1) 2 - 6i2 + 2i(A) (B) (C) 8-6*i* 2 - 2i(D)  $\frac{1}{i^{101}} =$ (2) (C) *i* (A) (B) 1 (D) -1 -i

(3) If z = a + ib, where  $a \neq 0$  and  $b \neq 0$ , which of the following statements is false?

(A)  $z - \overline{z} = 2bi$  (B)  $|z| + |\overline{z}| = |z + \overline{z}|$ 

(C) 
$$\arg(z) + \arg(\overline{z}) = 0$$
 (D)  $|z|^2 = z\overline{z}$ 

(4) If 
$$z = i - \sqrt{3}$$
 then  $\arg(z^4)$  is  
(A)  $\frac{2\pi}{3}$  (B)  $\frac{\pi}{3}$   
(C)  $-\frac{2\pi}{3}$  (D)  $-\frac{\pi}{3}$ 

- (5) The non-real roots of  $z^3 + 8 = 0$  have
  - (A) modulus 8 and arguments  $\pm \frac{2\pi}{3}$  (B) modulus 8 and arguments  $\pm \frac{\pi}{3}$ (C) modulus 2 and arguments  $\pm \frac{2\pi}{3}$  (D) modulus 2 and arguments  $\pm \frac{\pi}{3}$

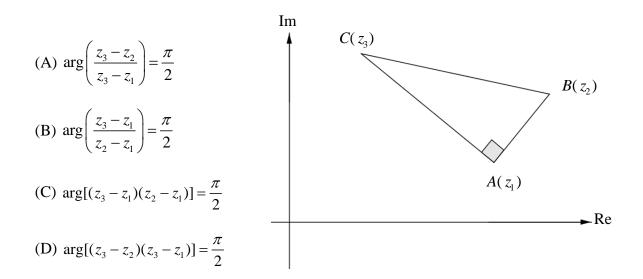
(6) If 
$$z = 2i$$
 and  $w = 2 - 2i$ , then the modulus and argument of  $\frac{z}{w}$  are respectively

(A)  $\frac{1}{\sqrt{2}}, \frac{3\pi}{4}$  (B)  $\frac{1}{\sqrt{2}}, -\frac{\pi}{4}$ 

(C) 
$$\sqrt{2}, \frac{3\pi}{4}$$
 (D)  $\sqrt{2}, \frac{\pi}{4}$ 

(7) Let  $u = 4(\cos\frac{3\pi}{4} + \sin\frac{3\pi}{4})$  and  $v = r(\cos\theta + i\sin\theta)$ . If  $uv = 12(\cos\frac{\pi}{3} + i\sin\frac{\pi}{3})$ , then

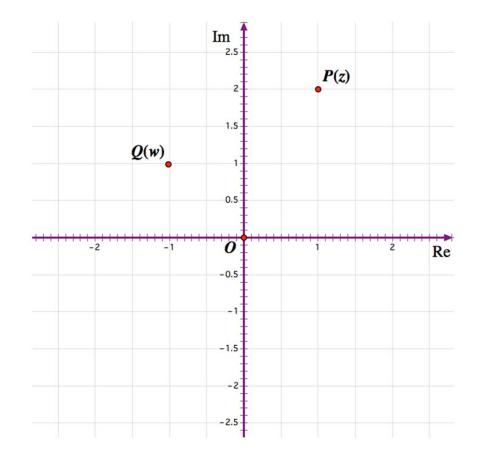
> (A)  $r = 3, \theta = \frac{5\pi}{12}$  (B)  $r = 8, \theta = -\frac{5\pi}{12}$ (C)  $r = 8, \theta = \frac{5\pi}{12}$  (D)  $r = 3, \theta = -\frac{5\pi}{12}$


(8) The point R represents the complex number z on the Argand diagram. Which of the following describes the locus of R specified by |z-6| = |z|?

(A) Circle centre (6,0), radius |z|

The equation  $x^2 - 2ix + 3 = 0$  has

(9)


- (B) Circle centre the origin, radius |z|
- (C) Perpendicular bisector of (0,0) and (6,0)
- (D) Perpendicular bisector of (0,0) and (0,6)
- (A) no roots (B) one real and one complex root
  - (C) two purely imaginary roots (D) two real roots
- (10) The points *A*, *B* and *C* are three points on the Argand plane representing the complex numbers  $z_1$ ,  $z_2$  and  $z_3$  respectively as shown on the diagram. *AB* is perpendicular to *AC*. Which statement is correct?



#### Question 11 continued: Constrained Answers (20 marks).

### Indicate your answer by entering it into the appropriate diagrams on the answer sheet provided.

(a) Point P represents the complex number z and Q represents the complex number  $\omega$ .



#### Plot the points that represent

- (i)  $A(\overline{z})$
- (ii)  $B(-\omega)$
- (iii)  $C\left(\frac{1}{\omega}\right)$
- (iv) D(iz)
- (v)  $E(\omega-z)$

| (b)          |                                                                                |   |
|--------------|--------------------------------------------------------------------------------|---|
| (i)          | Plot the roots of $z^8 - 1 = 0$ on the Argand Plane provided.                  | 2 |
| (ii)         | Let the root with the smallest positive argument be $\alpha$                   |   |
| (iii)        | Write the complex number that is in the fourth quadrant in terms of $\alpha$ . | 1 |
| <i>(</i> • ) |                                                                                |   |
| (iv)         | Write $\alpha^{-10}$ in modulus argument form.                                 | 1 |

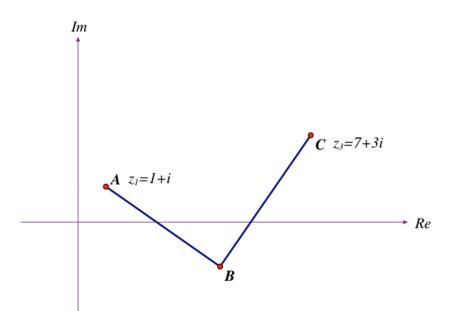
(c) Sketch the following loci and the answer sheet provided show all important features:

(i) |z-3-2i| = |z+3|

(ii) 
$$-\frac{\pi}{4} < \arg(z) < \frac{\pi}{4}$$
 and  $\operatorname{Re}(z) \le 2$  2

(iii) 
$$0 \le \arg(z-5+2i) \le \frac{\pi}{2}$$
 and  $|z-5+2i| \le 1$  3

(iv) 
$$|z-3+4i| = 2$$
 and determine the maximum and minimum values for  $|z|$  3


#### Question 12: (10 marks) Free Response

(a) Show that for any non zero complex number 
$$z$$
 2  
 $\arg\left(\frac{z}{\overline{z}}\right) = 2\arg(z)$ 

(b)

(i) Find the square roots of 5-12i.

(ii) Hence solve the equation  $z^2 - (1-4i)z - (5-i) = 0$ , expressing your answers in the form a + ib. 2



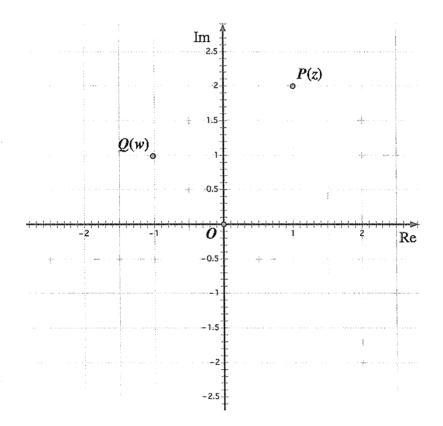
The points A and C represent the complex numbers  $z_1 = 1 + i$  and  $z_3 = 7 + 3i$  and B represents the complex number  $z_2$ . Find the complex number  $z_2$  in the form a + ib where a and b are real, such that  $\triangle ABC$  is isosceles and right-angled at B.

4

2

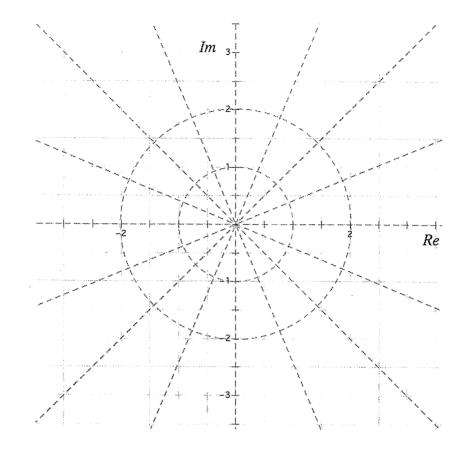
Marks

2


### \Student Númber:\_

Multiple choice answer sheet – Use pencil to completely colour the circle representing your answer.




**Constrained Answer Sheet – Write your answer in the space provided.** 

11 (a)

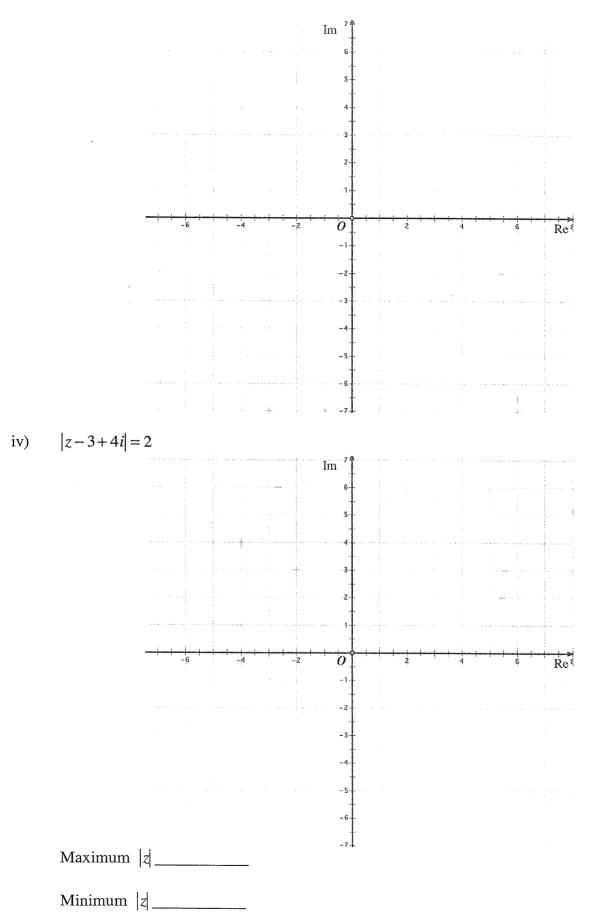


Plot the points that represent

- (i)  $A(\overline{z})$
- (ii)  $B(-\omega)$
- (iii)  $C\left(\frac{1}{\omega}\right)$
- (iv) D(iz)
- (v)  $E(\omega-z)$



(iii) Write the complex number that is in the fourth quadrant in terms of  $\alpha$ 

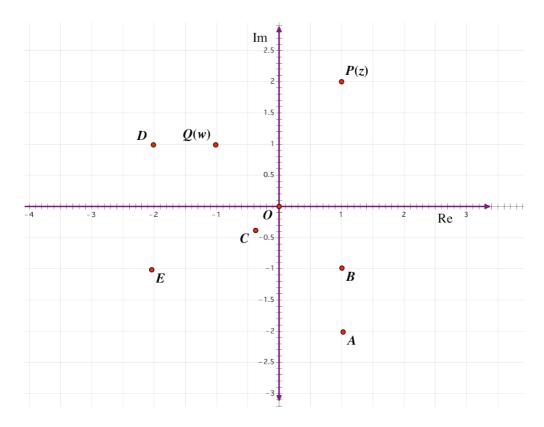

(iv) Write  $\overline{\alpha^{-10}}$  in modulus argument form.

### Student Number:\_\_\_\_

## Mathematics Class:

11.(c) (i) |z-3-2i| = |z+3+2i|Im 7 .4 .4 -2 0 ź Re \_ ~2. - 5 -71  $-\frac{\pi}{4} < \arg(z) < \frac{\pi}{4}$  and  $\operatorname{Re}(z) \le 2$ (ii) Ĭm Re<sup>ε</sup> -6 -2 0 -4 ź

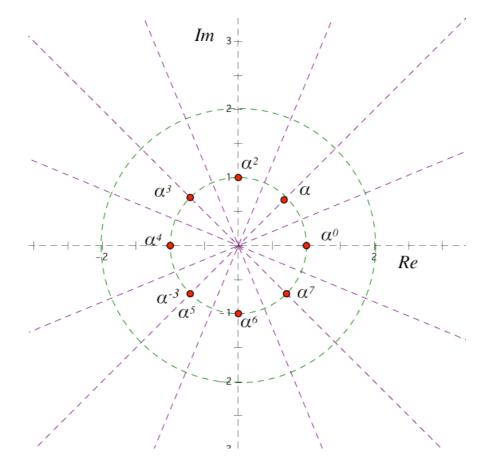
# 11.(c) (iii) $0 \le \arg(z-2+2i) \le \frac{\pi}{2}$ and $|z-2+2i| \le 2$




Multiple choice answer sheet – Use pencil to completely colour the circle representing your answer.

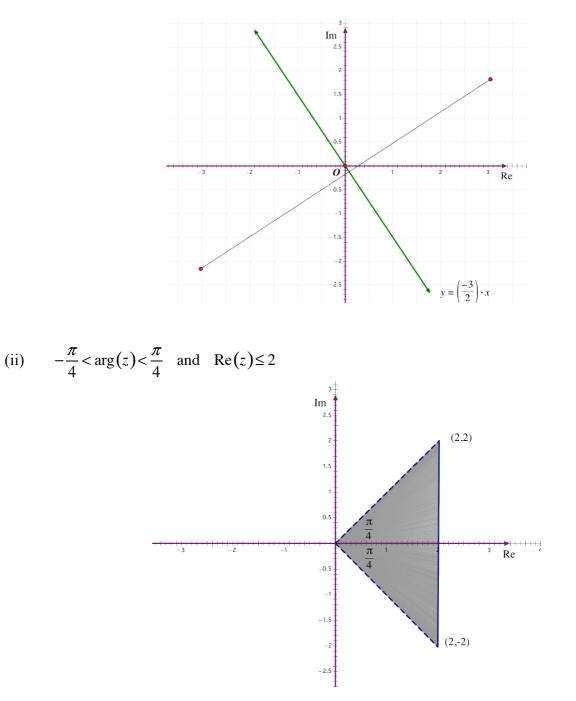


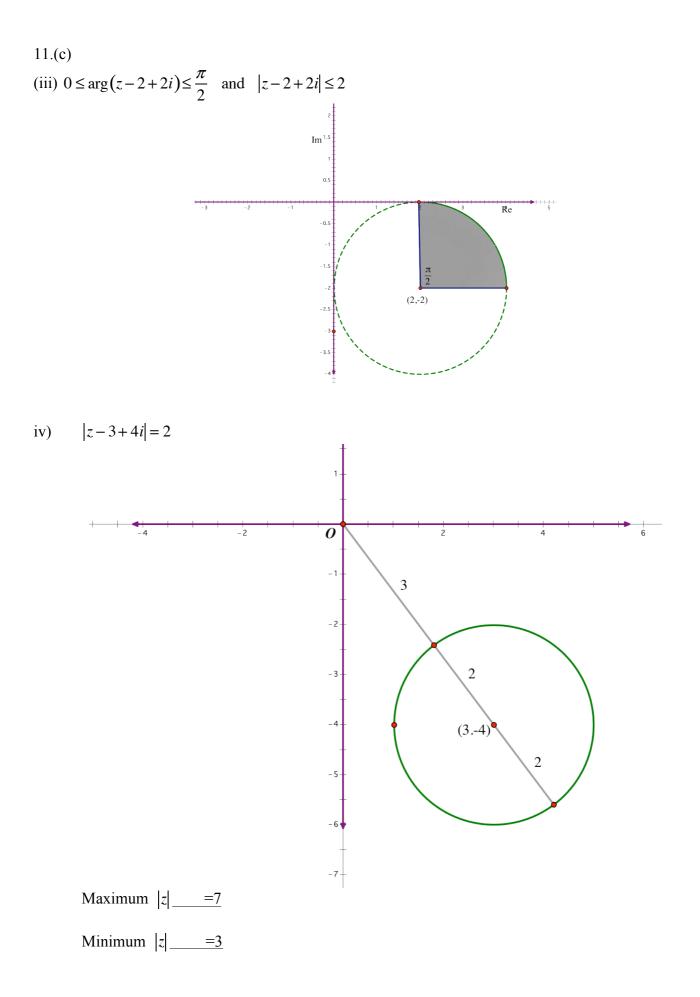
**Constrained Answer Sheet – Write your answer in the space provided.** 


11 (a)



Plot the points that represent


- (i)  $A(\overline{z})$
- (ii)  $B(-\omega)$
- (iii)  $C\left(\frac{1}{\omega}\right)$
- (iv) D(iz)
- (v)  $E(\omega-z)$


(b)  $z^8 - 1 = 0$ 



| (iii) | ) If $\alpha$ is the complex root in quadrant 1, write the complex root in quadrant 4 as a power of $\alpha$ . |                                                                                      |                                                                |  |  |
|-------|----------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------|--|--|
| (iv)  | 1 1                                                                                                            | $\overline{\alpha^{-10}} = \overline{\alpha^6} = a^2 = \cos\left(\frac{1}{2}\right)$ | $\left(\frac{\pi}{2}\right) + i\sin\left(\frac{\pi}{2}\right)$ |  |  |

11.(c) (i) |z-3-2i| = |z+3+2i|





Question 12: (10 marks) Solutions Free Response

(a) Show that for any non zero complex number  $\arg\left(\frac{z}{z}\right) = 2\arg(z)$ 

Let 
$$z = r \operatorname{cis} \theta$$
 and so  $\overline{z} = r \operatorname{cis} (-\theta)$   
$$\frac{z}{\overline{z}} = \frac{r \operatorname{cis} \theta}{r \operatorname{cis} (-\theta)} = \operatorname{cis} (2\theta)$$
$$\therefore \operatorname{arg} \left(\frac{z}{\overline{z}}\right) = 2\theta = 2 \operatorname{arg} z$$

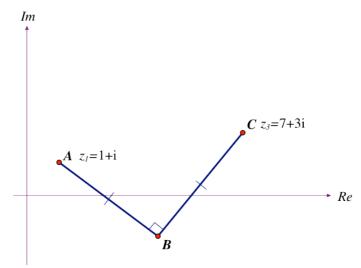
(b)

(i) Find the square roots of 5-12i.

$$5-12i = (x + yi)^{2}$$
$$= x^{2} - y^{2} + 2xyi$$
$$5 = x^{2} - y^{2}$$
$$-6 = xy$$
$$\therefore x = -3 \text{ and } y = 2$$
$$\therefore x = 3 \text{ and } y = -2$$

Square roots of 5-12i are -3+2i and 3-2i

(ii) Hence solve the equation  $z^2 - (1-4i)z - (5-i) = 0$ , expressing your answers in the form a + ib.


$$z = \frac{1 - 4i \pm \sqrt{(-(1 - 4i))^2 - 4 \times 1 \times -(5 - i)}}{2}$$

$$z = \frac{1 - 4i \pm \sqrt{5 - 12i}}{2}$$

$$z = \frac{1 - 4i \pm (3 - 2i)}{2}$$

$$z = \frac{4 - 6i}{2} = 2 - 3i \quad \text{and} \quad z = \frac{-2 - 2i}{2} = -1 - i$$

2



The points A and C represent the complex numbers  $z_1 = 1 + i$  and  $z_3 = 7 + 3i$  and B represents the complex number  $z_2$ . Find the complex number  $z_2$  in the form a + ib where a and b are real, such that  $\triangle ABC$  is isosceles and right-angled at B.

4

$$\vec{BA} = z_1 - z_2$$

$$= 1 + i - a - bi$$

$$= 1 - a + i(1 - b)$$

$$\vec{BC} = z_3 - z_2$$

$$= 7 + 3i - a - bi$$

$$= 7 - a + i(3 - b)$$

$$i \times \vec{BC} = \vec{BA}$$

$$i \times (7 - a + i(3 - b)) = 1 - a + i(1 - b)$$

$$i(7 - a) - (3 - b) = 1 - a + i(1 - b)$$

By equating real and imaginary parts

$$-(3-b) = 1-a$$
  

$$b = 4-a$$
  
and  

$$(7-a) = (1-b)$$
  

$$7-a = 1-(4-a)$$
  

$$7-a = -3+a$$
  

$$10 = 2a$$
  

$$a = 5$$
  

$$b = 4-a$$
  

$$b = 4-5$$
  

$$b = -1$$
  

$$\therefore z_2 = 5-i$$